Chemical and Pharmaceutical Bulletin
Article overview
Review
Palladium(0)-Catalyzed Benzylic C(sp3)–H Functionalization for the Concise Synthesis of Heterocycles and Its Applications
Chihiro Tsukano
Author affiliations
JOURNALS PEER REVIEWED FREE ACCESS FULL-TEXT HTML

Volume 65 (2017) Issue 5 Pages 409-425

Details
Full Text-HTML Download PDF (2579K) Email to author Contact us
Abstract

C–H functionalization reactions involve the activation of otherwise unreactive C–H bonds, and represent atom economical methods for the direct transformation of simple substrates to complex molecules. While transition metal-catalyzed C(sp2)–H functionalization reactions are regularly used in synthesis, C(sp3)–H functionalization is rarely applied to the synthesis of complex natural products because of the difficulties associated with controlling selectivity. With this in mind, we focused on the development of new palladium (Pd)(0)-catalyzed C(sp3)–H functionalization reactions for the synthesis of complex molecules, resulting in several new methods capable of solving these problems. We initially developed a concise synthetic method for the facile construction of oxindoles and spirooxindoles via a Pd-catalyzed benzylic C(sp3)–H functionalization reaction. This method was subsequently extended to the synthesis of various heterocycles, including 2-arylindoles, benzocarbazole, indolocarbazole, indoloquinazolinone, and indoloquinazolinedione, as well as the total synthesis of several pyrrolophenanthridine alkaloids without the need for any protecting groups. This method was also successfully applied to the synthesis of the right-hand fragment of benzohopane from tetrahydro-2H-fluorene, which was constructed by a Pd-catalyzed benzylic C(sp3)–H functionalization. In this review, we provide a detailed discussion of our most recent investigations pertaining to Pd(0)-catalyzed benzylic C(sp3)–H functionalization.

Author information
Copyright © 2017 The Pharmaceutical Society of Japan
Next article
Altmetrics
Recently visited articles
feedback
Top