Chemical and Pharmaceutical Bulletin
The Pharmaceutical Society of Japan, established in 1880, is one of Japan’s oldest and most distinguished academic societies. The Society currently has around 18,000 members. It publishes three monthly scientific journals. Chemical and Pharmaceutical Bulletin (Chem. Pharm. Bull.) began publication in 1953 as Pharmaceutical Bulletin. It covers chemistry fields in the pharmaceutical and health sciences. Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012. Yakugaku Zasshi (Japanese for “Pharmaceutical Science Journal”) has the longest history, with publication beginning in 1881. Yakugaku Zasshi is published mostly in Japanese, except for some articles related to clinical pharmacy and pharmaceutical education, which are published in English.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.

Chairman of Committee
Ken-ichi Hosoya
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama

Read more
26,948 registered articles
(updated on April 23, 2017)
Online ISSN : 1347-5223
Print ISSN : 0009-2363
Journal home
Featured article
Volume 65 (2017) Issue 4 Pages 356-358
Alternative Formation of Red-Shifted Channelrhodopsins: Noncovalent Incorporation with Retinal-Based Enamine-Type Schiff Bases and Mutated Channelopsin

Red-shifted channelrhodopsins (ChRs) are attractive for optogenetic tools. We developed a new type of red-shifted ChRs that utilized noncovalent incorporation of retinal and 3,4-dehydroretinal-based enamine-type Schiff bases and mutated channelopsin, C1C2-K296G. These ChRs exhibited absorption maxima that were shifted 10–30 nm toward longer wavelengths than that of C1C2-ChR regenerated with all-trans-retinal.

Read more
Editor’s picks

In this communication, development of a new type of red-shifted channelrhodopsins (ChRs) is described. Optogenetics is a powerful new technique which allows control of neuronal activity by light, and ChRs are now widely used in optogenetics due to their function of a light-gated cation channel. In neuroscience, ChRs responding to a long-wavelength light are eagerly required, because ChRs now used are maximally sensitive to green and blue light, and does not penetrate tissues. Here developed new type of ChRs model consisted of red-shifted chromophores (retinal-based enamine-type Schiff bases) and mutated channelopsin (C1C2-K296G), in which chromophores were incorporated noncovalently. Thus prepared new ChRs exhibited absorption maxima that were 10-30 nm red-shifted compared with the original C1C2.

View the past featured articles
View all articles in Current issue
Most popular articles Mar.2017
Share this page
Select past volume & issue
Journal news & Announcements
  • Chem. Pharm. Bull. Vol. 65 No. 4
    Current Topics: Cutting-edge Science of Cyclodextrin

  • Chem. Pharm. Bull. Vol. 65 No. 1
    Current Topics: Reversal or Control of the Innate Reactivity of Functional groups